Identifikasi cacat lintasan luar bantalan bola menggunakan Support Vector Machine (SVM) pada fan industri

Berli P. Kamiel, Wildan T.B Anggoro, Bambang Riyanta

Abstract


Air regulation creates a comfortable and healthy environment for activities in the industry. A fan is a rotary machine that functions to regulate and circulate air in a room or work area. The bearing is an important component of a fan that is potentially damaged during operation. Damage to the bearing will interfere with perform the fan and can even disrupt a whole production process. A bearing condition monitoring method is needed that is effective and easy to use. Conventional methods such as spectrum analysis and sound analysis are not easy to use by operators in the field due to spectrum analysis requires spectrum reading experience while sound analysis is highly dependent on personal experience. This study proposes a vibration-based pattern recognition method that is Support Vector Machine (SVM) to detect damage to a bearing. This method effectively classifies bearing conditions and is easy to use. The study aims to obtain a method of detecting defects in single-row bearing outer paths on industrial fans using SVM. The study uses an industrial fan test rig with two bearing conditions, that is normal conditions (no defects) and external track defects with a depth of 1.4 mm defect and 0.4 mm width. Recording vibration signals using a data acquisition module with a sampling speed of 17066 Hz and a motor rotational speed of 2850 rpm. The SVM classifier is trained using 9 selected statistical parameters which are extracted from 700 sets of vibration signal recordings. The results showed the statistical parameters that were effectively used were Root Mean Square (RMS), Standard Deviation, Kurtosis, Variance, Entropy, Standard Error, Median, Signal-to-Noise and Distortion Ratio (SINAD), and Signal to Noise Ratio (SNR).  The most optimal SVM model is obtained by applying combine Median-SINAD statistical parameters, with the same testing accuracy for the RBF, Polynomial and Linear kernels at 100%. Keywords:  Bearings, external path defects, kernel, statistical parameters, SVM.


Full Text:

PDF

References


. Anoi, Y. H., Yani, A., & Seto, B. A. (2019). Analisis Penyebab dan Perbaikan Vibrasi pada Fin Fan Blower F1-Ek-9D1 Milik PT. Badak LNG Bontang. TURBO, 48-55. [2]. Kamiel, B. P., Mulyani, & Sunardi. (2017). Deteksi Cacat Bantalan Bola Pada Pompa Sentrifugal Menggunakan Spektrum Getaran. Jurnal Ilmiah Semesta Teknika, 204-215 [3]. Fathurrohman, M., H, R. L., & Susilo, D. D. (2019). Diagnosa Kerusakan Bantalan Bola Menggunakan Metode Support Vector Machine. Jurnal Mekanika, 14-21 [4]. Sakthivel, N., Sugumaran, V., & Babudevasenapati, S. (2010). Vibration Based Fault Diagnosis of Monoblock Centrifugal Pump Using Decision Tree. Elsevier, 4040–4049 [5]. Perdana, R. M., Widodo, T. S., & Litasari. (2010). Perancangan Sistem Pengolahan Isyarat ECG Untuk Diagnosis Menggunakan LabVIEW 2009 Berbasis Wavelet. Jurnal Penelitian Teknik Elektro, 231-236 [6]. Mahendra, I. G., Novamizanti, L., & Atmaja, R. D. (2015). Deteksi Ada Tidaknya Cacat pada Kayu Menggunakan Metode Ekstraksi Ciri Statistik. e-Proceeding of Engineering, 58-68. [7]. Luo, Y., Sun, H., Yuan, S., & Yuan, J. (2015). Research on Statistical

TURBO p-ISSN: 2301-6663, e-ISSN: 2447-250X Vol. 8 No. 2. 2019

Characteristics of Vibration in Centrifugal Pump. Rev. Téc. Ing. Univ. Zulia., 49-61. [8]. Suhardjono. (2004). Analisis Sinyal Getaran untuk Menentukan Jenis dan Tingkat Kerusakan Bantalan Bola (Ball Bearing). Jurnal Teknik Mesin, 39-48 [9]. Adi, F. R., & Suwarmin. (2017). Identifikasi Keausan Bantalan Tirus (Tapered Bearing) Berbasis Analisis Vibrasi dengan Metode Support Vector Machine (SVM). Jurnal Teknik ITS, 768-771 [10]. Apriansyah, J. A., Suryadi, D., & Suryono, A. F. (2017). Kajian Eksperimental Cacat pada Bantalan Berdasarkan Level Getaran. Teknosia [11]. Damayanti, F., Arifin, A. Z., & Soelai, R. (2010). Pengenalan Citra Wajah Menggunakan Metode TwoDimensional Linier Discriminant Analisist dan Support Vector Machine. Jurnal Ilmiah Kursor, 147-156. [12]. Honakan, Adiwijaya, & Faraby, S. A. (2018). Analisis Dan Implementasi Support Vector Machine Dengan String Kernel Dalam Melakukan Klasifikasi Berita Berbahasa Indonesia. eProceeding of Engineering, 17011710 [13]. Susilo, D. D. (2008). Deteksi Kerusakan Bantalan Gelinding pada Pompa Sentrifugal dengan Analisis Sinyal Getaran. Mekanika, 42-53




DOI: http://dx.doi.org/10.24127/trb.v8i2.1024

Refbacks

  • There are currently no refbacks.